Name:

Instructions: Write-up complete solutions to the following problems and submit answers on Gradescope. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A rubric for homework problems appears on the final page of this assignment.

• Unless otherwise noted, problem numbers are taken from the 2nd edition of Blitzstein and Hwang's Intro to Probability.

Monday 9/19

Chapter 3

39, 47

Additional Problems

AP1. Let X be a discrete random variable with PMF $p(n) = \frac{1}{2^{n+1}}$ for integers $n \ge 0$, and let $Y = 2^X$. What is the support of Y? Find a formula for the pmf of Y and compute P(Y = 1).

AP2. Suppose X and Y are independent discrete random variables with PMFs p_X and p_Y , defined on the non-negative integers. Let Z = X + Y. Find a formula for the PMF p_Z of Z in terms of p_X and p_Y . Hint: LoTP

Wednesday 9/21

Chapter 4

12, 15, 83

Friday 9/23

Chapter 4

11, 26, 63

General Rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key justification for why the solution is valid. Alternatively, the solution is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant component of the problem or makes a significant mistake. Alternatively, in a multi-part problem, a majority of the solutions are correct and well-written, but one part is missing or is significantly incorrect
2	The solution is either correct but not adequately written, or it is adequately written but overlooks a significant component of the problem or makes a significant mistake.
1	The solution is rudimentary, but contains some relevant ideas. Alternatively, the solution briefly indicates the correct answer, but provides no further justification
0	Either the solution is missing entirely, or the author makes no non-trivial progress toward a solution (i.e. just writes the statement of the problem and/or restates given information)
Notes:	For problems with multiple parts, the score represents a holistic review of the entire problem.
	Additionally, half-points may be used if the solution falls between two point values above.