
MAT/STA 335 Final Exam Review Solutions Fall 2022

For extra practice, several additional review problems are printed below. Solutions to these problems can
be found on the exams page of the course website. While these questions are representative of the typical
scope and difficulty of individual exam questions, this review is not comprehensive, nor does it necessarily
represent the total amount of time available for the exam. Additionally, while the exam will be cumulative,
these problems focus primarily on content covered since the second midterm. You should use older exams,
homework, and class activities to review older material.

Take-home Exam.

(1) A fair 20-sided die is rolled repeatedly until a number greater than or equal to 11 is shown. Let W
be the event that the first such number appear on an even numbered roll (i.e if the first three rolls
are 3, 2, 9, and the fourth roll is 12, then W occurs, since 4 is even).
(a) Give at least two different ways to calculate P (W ), using material from our course.
(b) Explain why it makes sense that P (W ) < 1/2.
(c) Create a simulation of this dice-rolling experiment in R, and use your simulation to approxi-

mate P (W ). Hint: In R, n%%2 returns 0 if n is even and 1 if n is odd.

Solution. (a) Several methods are available. Below are solutions using First-Step analysis and
using the First Success variable.

• We can use first-step analysis. Let B be the event that the first roll is greater than or
equal to 11. By LotP,

P (W ) = P (W |B)P (B) + P (W |Bc)P (Bc) = P (W |Bc)
1

2

as P (W |B) = 0, since the first roll is an odd numbered roll. But now note that, given Bc,
if an additional odd number of rolls are required, then the total number of rolls required
is even. Since future rolls are independent of past rolls, P (W |Bc) = P (W c) = 1−P (W ).
Therefore,

P (W ) = (1− P (W ))
1

2

and so P (W ) = 1
3 .

• Alternatively, let X denote the number of rolls required and note that X ∼ FS(1/2),
which has PMF

P (X = k) =
1

2k−1

1

2
k ≥ 1

Then

P (X is even ) =
∑

k even

P (X = k) =
∞∑
j=1

1

22j−1

1

2
=

∞∑
j=1

1

4j
=

1
4

1− 1
4

=
1

3

(b) Since we can only roll a number greater than or equal to 11 in an even-number of rolls if the
first roll is 10 or less (while rolling a number greater than or equal to 11 in an odd number of
rolls does not have this challenge), then it makes sense that P (W ) < 1

2 < P (W c).
(c) In R, we can perform this experiment by writing a function using the following code:

do_trials <- function(){

trials <- 0

is_big <- 0

while(is_big == 0){

is_big <- sum(sample(1:20, size = 1) >= 11)

trials <- trials + 1

}

return(trials)

}

We then use the replicate function to perform many simulations, and calculation the pro-
portion of times the result occurred in an even number of rolls:

https://grinnell-sta-335-fall-22.github.io/exams.html#Review_Problems
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sim <- replicate(10^5, do_trials())

success <- sim %% 2

proportion <- sum(success == 0)/length(success)

proportion

## 0.3365

In the above simulation, the result occurred about 33% of the time.

(2) Suppose X1 and X2 are iid Beta(2, 1) variables. Define two new variables Y1 and Y2 by

Y1 =
X1

X2
Y2 = X1X2

Let g be the transformation (y1, y2) = g(x1, x2) =
(
x1
x2
, x1x2

)
.

(a) Write down the formula for the joint density function ofX1 andX2 (be sure to specify support).
(b) Find a formula for the inverse transformation (x1, x2) = g−1(y1, y2).
(c) Compute the Jacobian either of g or g−1.
(d) Use the change-of-variables formula to find a formula for the joint PDF of Y1 and Y2.

Solution. (a) Since each is Beta(2, 1), they both have marginal density f(x) = 2x. Since X1, X2

are independent, then their joint density is the product of their marginals, and so their joint
density is

4x1x2 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

(b) Note that y1y
2 = x21, so x1 =

√
y1y2. On the other hand, y2

y1
= x22, so x2 =

√
y2
y1
. Therefore,

(x1, x2) = g−1(y1, y2) =

(
√
y1y2,

√
y2
y1

)
(c) The Jacobian of g−1 is

Jg−1(y1, y2) =
∂x

∂y
=

∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

 =


√
y2

2
√
y1

√
y1

2
√
y2

−1
2

√
y2√
y31

1
2
√
y1y2


which has determinant

det Jg−1(y1, y2) =
1

4y1
+

1

4y1
=

1

2y1

Since y1 > 0, this is also the absolute Jacobian determinant.
(d) By the change of variables formula,

fY1,Y2 = fX1,X2(g
−1(y1, y2) = | det Jg−1(y1, y2)| = 4

√
y1y2

√
y2
y1

1

2y1
= 2

y2
y1

which is valid for all points y1, y2 in the image of the unit square under g.

(3) Let X1, X2, . . . be iid variables, each with CDF F . For every x, define a function Rn(x) to be the
number of X1, . . . , Xn that are less or equal to x.
(a) Find the mean and variance of Rn(x) (in terms of n and F (x)).

(b) Show that with probability 1, limn→∞
Rn(x)

n = F (x).

Solution. For each 1 ≤ j ≤ n, let Ij be the indicator for the event Xj ≤ x. Then Rn(x) =
∑n

j=1 Ij
and by the fundamental bridge and linearity of expectation,

E[Rn(x)] =
n∑

j=1

E[Ij ] =
n∑

j=1

P (Xj ≤ x) = nF (x)
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Since the variables X1, . . . , Xn are independent, then the indicator variables I1, . . . , In are inde-
pendent as well. Additionally, since each Ij is Bern(p) with p = F (x), then Var(Ij) = p(1 − p) =
F (x)(1− F (x)). Therefore

Var(Rn(x)) =

n∑
j=1

Var(Ij) =

n∑
j=1

F (x)(1− F (x)) = nF (x)(1− F (x))

By the strong law of large numbers,

lim
n→∞

Rn(x)

n
= lim

n→∞

I1 + · · ·+ In
n

= E[I1] = F (x).

as the variables I1, . . . , In are iid with mean F (x).

(4) LetX1, . . . , Xn be iidN(µ, σ2) with n ≥ 2. Let X̄n be the sample mean and let S2
n = 1

n−1

∑n
k=1(Xk−

X̄n)
2 be the sample variance. Show that X̄ and S2

n are independent. Hint: Apply properties of
Multivariate Normal distributions to the vector (X̄n, X1 − X̄n, . . . , Xn − X̄n).

Solution. Let X = (X̄n, X1 − X̄n, . . . , Xn − X̄n), and note that X is indeed MVN, since linear
combinations of its coordinates are linear combinations of the Xi, which are iid N(µ, σ2), and so
these linear combinations are Normally distributed.

Recall also that for MVN, if two coordinates are uncorrelated, then they are actually independent.
Consider Cov(X̄,Xj − X̄) for some j. By the linearity properties of Covariance,

Cov(X̄,Xj − X̄) = Cov(X̄,Xj)− Cov(X̄, X̄) = Cov(X̄,Xj)−Var(X̄)

Recall that Var(X̄) = σ2

n . Additionally, since Xj is independent of Xi for all i ̸= j, then

Cov(X̄,Xj) =
1

n

n∑
i=1

Cov(Xi, Xj) =
1

n
Cov(Xj , Xj) =

σ2

n

Therefore,

Cov(X̄,Xj − X̄) =
σ2

n
− σ2

n
= 0

That is, X̄ is indepdendent of each of Xj − X̄. But now, note that

S2
n =

1

n− 1

n∑
j=1

(Xj − X̄)2

is a function of just the Xj − X̄, and so S2
n is also independent of X̄.

(5) Jonathan’s newly-built computer will last Expo(λ) years before one of its parts fails. When that
happens, he will try to fix it. With probability p, he will be able to fix it, at which point it will
last an additional Expo(λ) years before one of its parts fails, independent of previous time until
failure (at which point he will attempt to fix it with probability p, and so on). If at any time the
computer cannot be fixed, he will build a new computer from scratch. Find the expected amount
of time until Jonathan builds a new computer, along with the variance in the amount of time.

Solution. Let N denote the number of part failures until the computer can no longer be repaired
(including the final one), and note that N ∼ FS(1 − p). Let T1 be the time until the first failure,
let T2 be the time until the second failure, and so on. Let T be the total times until the computer
cannot be repaired, with T = T1 + · · · + TN . By the Law of Total Expectation and linearity of
conditional expectation,

E[T ] = E[E[T |N ]] = E
[
E[T1|N ] + E[T2|N ] + · · ·+ E[TN |N ]

]
= E

[
N

1

λ

]
=

1

λ(1− p)
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(6) A new treatment for a disease is being tested, to see whether it is better than the standard treat-
ment. The existing treatment is effective on 50% of patients. It is believed initially that there is
a 2/3 chance the new treatment is effective on 60% of patients, and a 1/3 chance that the new
treatment is effective on 50% of patients. In a pilot study, the new treatment is given to 20 random
patients, and is effective for 15 of them.
(a) Given this information, what is the probability that the new treatment is better than the

standard treatment?
(b) A second study is done later, giving the new treatment to 20 new random patients. Given

the results of the first study, what is the PMF for how many of the new patients the new
treatment is effective on (Let p be the probability calculated in part (a), and express your
answer in terms of p).

Solution. (a) Let B be the event that the new treatment is better than the standard treatment
and let X be the number of people for which the new treatment was effective. By Bayes Rule,

P (B|X = 15) =
P (X = 15|B)P (B)

P (X = 15)
=

P (X = 15|B)P (B)

P (X = 15|B)P (B) + P (X = 15|Bc)P (Bc)

=

(
20
15

)
(0.6)15(0.4)5 23(

20
15

)
(0.6)15(0.4)5 23 +

(
20
15

)
0.520 13

≈ 0.9099

(b) Let Y be the number of new patients for whom the new treatment is effective, and let p =
P (B|X = 15) from above. If 0 ≤ k ≤ 20, then by LotP with extra conditioning

P (Y = k|X = 15) = P (Y = k|X = 15, B)P (B|X = 15) + P (Y = k|X = 15, Bc)P (Bc|X = 15)

=P (Y = k|B)P (B|X = 15) + P (Y = k|Bc)P (Bc|X = 15)

=

(
20

k

)
0.6k0.420−kp+

(
20

k

)
0.5k(1− p)

(7) Consider an n-by-n checkerboard divided into n2 many 1-by-1 squares. Suppose each square is
colored gray or white independently and uniformly at random. Let X denote the number of 2-by-2
inch subboards of the checkerboard that are all gray. An example of one such board is shown below
(with n = 4). For this board, X = 2 with the two all-gray 2-by-2 subboards and centerpoints of
these subboarded highlighted in red and blue.

(a) Suppose the vertices of the checkerboard are labeled in Cartesian coordinates, where (0, 0)
denotes the vertex in the lower left of the checkerboard and (n, n) denotes the vertex in the
upper right of the checkerboard. Let A be the event that the vertex at (1, 1) is the center of
an all-gray 2-by-2 subboard, and let B be the event that the vertex at (2, 1) is the center of
an all-gray 2-by-2 subboard. Are A and B independent? Explain.

(b) Compute the expected value of X.
(c) What is an accurate approximate distribution of X? Explain why this approximation is accu-

rate.
(d) Use your approximation in the previous part to estimate the variance in X.
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Solution. (a) The 2-by-2 square centered at (1, 1) and the 2-by-2 square centered at (2, 1) have
two squares in common. If the event A occurs, then these two squares must be gray, which
makes it more likely for the event B to occur. Hence, A and B are not independent.

(b) There are a total m = (n − 1)(n − 1) interior vertices in the checkerbard. Number them 1
through m and for 1 ≤ j ≤ m, let Ij be the indicator that the 2-by-2 square centered at vertex
j is all gray. Since the colors of squares are independent, then E[Ij ] = P (4 squares are gray) =
1
24
. By linearity and the fundamental bridge,

E[X] = E

 m∑
j=1

Ij

 =

m∑
j=1

E[Ij ] =
m

24
=

(n− 1)2

24
.

(c) While the events that adjacent vertices are centers of all gray squares are somewhat dependent,
this dependence is relatively weak. Moreover, for non-adjacent vertices, the events that these
vertices are at the center of all gray squares are independent. Therefore, the Poisson Paradigm

applies and X ∼ Pois(λ) where λ = E[X] = (n−1)2

24
from above.

(d) The variance of Pois(λ) variable is λ, and so

Var(X) ≈ (n− 1)2

24
.

(8) A researcher is studying the length of hospital stays for patients with a certain disease. Let
X ∼ Pois(λ) denote the number of days a randomly selected person with the disease stays at a
hospital. Data however, is only collected for patients with the disease who were admitted to the
hospital (i.e. no data is available for patients with the disease who did not stay at a hospital).
Therefore, averaging the length of hospital stays among this population does not estimate E[X].
Instead, we can assess the conditional distribution of X, given that the person stayed at least 1
day in the hospital.
(a) Find a formula for the conditional PMF of X given X ≥ 1.
(b) Use the previous result to calculate E[X|X ≥ 1].
(c) Use part (a) to calculate Var(X|X ≥ 1).
(d) Create a plot in R for the function f(λ) = E[X|X ≥ 1] (i.e. a plot of the conditional expected

value versus the expected value). Based on your plot, for what values of λ is λ ≈ E[X|X ≥ 1]?

Solution. (a) Using the definition of conditional probability, the conditional PMF of X|X ≥ 1 is

P (X = k|X ≥ 1) =
P (X = k)

P (X ≥ 1)
=

e−λλk

k!(1− e−λ)

for k ≥ 1. The conditional PMF is 0 for k = 0.
(b) We can use the conditional PMF to find the conditional expectation:

E[X|X ≥ 1] =
∞∑
k=1

k
e−λλk

k!(1− e−λ)
=

e−λλ

1− e−λ

∞∑
k=1

λk−1

(k − 1)!
=

e−λλ

1− e−λ

∞∑
k=0

λk

k!
=

e−λλ

1− e−λ
eλ =

λ

1− e−λ
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(c) Likewise, we can use LOTUS and part (a) to compute the conditional variance:

E[X2|X ≥ 1] =
e−λ

1− e−λ

∞∑
k=1

k2λk

k!

=
e−λλ

1− e−λ

∞∑
k=1

k
λk−1

(k − 1)!

=
e−λλ

1− e−λ

∞∑
k=1

d

dλ

λk

(k − 1)!

=
e−λλ

1− e−λ

d

dλ
λ

∞∑
k=1

λk−1

(k − 1)!

=
e−λλ

1− e−λ

d

dλ
λeλ

=
e−λλ

1− e−λ

(
eλ + λeλ

)
=

λ+ λ2

1− e−λ

Therefore,

Var(X|X ≥ 1) = E[X2|X ≥ 1]− (E[X|X ≥ 1])2 =
λ+ λ2

1− e−λ
−
(

λ

1− e−λ

)2

(d) We will plot f(λ) on the range 0 < λ < 5, along with the function g(λ) = λ:
f <- function(lambda){

lambda/(1 - exp(-lambda))

}

lambda <- seq(0, 5, length = 100)

plot(lambda, f(lambda), type = "l", ylim = c(0,5))

lines(lambda, lambda, col = "red")

Based on the plot, it seems that f(λ) ≈ λ for λ > 4.

(9) Consider the binomial distribution. Name at least 4 other distributions that are related to the
binomial and explain how they are related to the binomial.
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Solution. Many answer are possible. Here are a few:
• Bernoulli. The sum of n iid Bern(p) variables is Bin(n, p).
• Hypergeometric. For w + b large and p = w

w+b , HGeom(w, b, n) ≈ Bin(n, p).

• Poisson. By the Poisson Paradigm, Bin(n, p) is approximately Pois(λ) with λ = np with n is
large and p is small.

• Normal. When n is large and p is not too close to 0 or 1, then Bin(n, p) is approximately
N(np, np(1− p)).

• Beta. The Beta distribution is the conjugate prior to the Binomial distribution.
• Multinomial. The Multinomial is the n-dimensional generalization of the Binomial distribu-
tion.

• (Tenuous). In a sequence of Bernoulli trials, the number of failures before the first success is
Geometric, while the total number of success in a fixed number of trials is Binomial.

• (Tenuous). The Bin(1, 1/2) variable is Dunif(0, 1).
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