A process of arrivals in continuous time is called a *Poisson process* with rate λ if the following two conditions hold:

- The number of arrivals that occur in an interval of length t is a $Pois(\lambda t)$ random variable
- The number of arrivals that occur in disjoint intervals are independent of each other. For example, the number of arrivals in the interval (0, 10], (10, 12] and (15, 100] are independent.

We'll now define a few variables related to this process:

- For each real number $t \ge 0$, let N_t be the number of arrivals in the interval (0, t]; then $N_t \sim \text{Pois}(\lambda t)$.
- For s < t, the variable $N_t N_s$ counts the number of arrivals in the interval (s, t]; then $N_t N_s \sim \text{Pois}(\lambda(t s))$.
- For each integer $k \ge 1$, let T_j the time of the *j*th arrival; we will show $T_j \sim \text{Gamma}(j, \lambda)$.
- For each integer $k \ge 1$, let R_j be the time between the kth and (k-1)th arrival; we will show $R_j \sim \text{Expo}(\lambda)$.
- 1. The following exercises outline a proof that $T_j \sim \text{Gamma}(j, \lambda)$
 - (a) Find the CDF for T_1 using the fact that $P(T_1 \leq t) = P(N_t \geq 1)$. Then calculate the PDF of T_1 .
 - (b) Express the probability $P(T_j > t)$ as a finite sum, using the fact that $P(T_j > t) = P(N_t < j)$.
 - (c) Use your previous answer to write the CDF of T_i as a **finite** sum.
 - (d) Differentiate and use the product rule to write the PDF of T_j as a finite sum. Be careful about the derivative of the constant term.
 - (e) Explicitly write out the terms of the sum for the PDF of T_2 and T_3 . What pattern do you notice?
 - (f) Make a conjecture for how to simplify the sum for the PDF of T_i .
 - (g) Based on your formula in the previous part, what is the name of the distribution of T_j ?
- 2. The following exercises outline a proof that $R_j \sim \text{Expo}(\lambda)$.
 - (a) Let j be a positive integer. Express the event $R_j > t$ as an event involving T_j and T_{j-1} .
 - (b) Let $f_{j-1}(s)$ be the marginal PDF of T_{j-1} . Express $P(R_j > t)$ as an integral, by conditioning on the event $T_{j-1} = s$ and using continuous LotP.
 - (c) Rewrite the conditional probability inside your integral as a conditional probability involving N_{t+s} and N_s .
 - (d) Use the fact that for a Poisson process, the number of arrivals in disjoint intervals are independent to simplify your integral.
 - (e) Use the fact that f_{j-1} is a valid PDF and therefore, must integrate to 1, in order to calculate the value of the integral.